COSMIC DISTANCES

or, 'how far away is that thing anyway?'

IN ASTRONOMY...

- Angles are easy.
- Distances are hard.
 - Parallax
 - Standard Candle
 - Red Shift

PARALLAX

PARALLAX

far away stars

PARALLAX

We want to resolve very small angles:

Resolution 20µAS (!)

STANDARD CANDLES

- They were a real thing for a while.
- The idea is simple (and that usually means good):

STANDARD CANDLES

- Standard Candles in space.
 - Must be standard.
 - Must be (very) bright.

STANDARD CANDLES

Also: Type I a supernovae and others.

RED SHIFT

$$\frac{\Delta \lambda}{\lambda} = \frac{v_{\text{object}}}{v_{\text{wave}}}$$

$$v_{\text{object}} = v_{\text{wave}} \frac{\Delta \lambda}{\lambda}$$

$$v_{\text{object}} = c \frac{\Delta \lambda}{\lambda}$$

Pale Blue Dot

- Big Bang Recessional velocity is proportional to distance (V=constant X D). Let's call the constant 'H'.
- **D** = **V**/**H**
- Measure $\Delta \lambda$, use Doppler equation to get \mathbf{V} .
- Solve for D!

